Nutrient Sensing Systems in Fish: Impact on Food Intake Regulation and Energy Homeostasis
نویسندگان
چکیده
Evidence obtained in recent years in a few species, especially rainbow trout, supports the presence in fish of nutrient sensing mechanisms. Glucosensing capacity is present in central (hypothalamus and hindbrain) and peripheral [liver, Brockmann bodies (BB, main accumulation of pancreatic endocrine cells in several fish species), and intestine] locations whereas fatty acid sensors seem to be present in hypothalamus, liver and BB. Glucose and fatty acid sensing capacities relate to food intake regulation and metabolism in fish. Hypothalamus is as a signaling integratory center in a way that detection of increased levels of nutrients result in food intake inhibition through changes in the expression of anorexigenic and orexigenic neuropeptides. Moreover, central nutrient sensing modulates functions in the periphery since they elicit changes in hepatic metabolism as well as in hormone secretion to counter-regulate changes in nutrient levels detected in the CNS. At peripheral level, the direct nutrient detection in liver has a crucial role in homeostatic control of glucose and fatty acid whereas in BB and intestine nutrient sensing is probably involved in regulation of hormone secretion from endocrine cells.
منابع مشابه
Differential Effects of Tissue-Specific Deletion of BOSS on Feeding Behaviors and Energy Metabolism
Food intake and energy metabolism are tightly controlled to maintain stable energy homeostasis and healthy states. Thus, animals detect their stored energy levels, and based on this, they determine appropriate food intake and meal size. Drosophila melanogaster putative G protein-coupled receptor, Bride of sevenless (BOSS) is a highly evolutionarily conserved protein that responds to extracellul...
متن کاملGastrointestinal regulation of food intake.
Despite substantial fluctuations in daily food intake, animals maintain a remarkably stable body weight, because overall caloric ingestion and expenditure are exquisitely matched over long periods of time, through the process of energy homeostasis. The brain receives hormonal, neural, and metabolic signals pertaining to body-energy status and, in response to these inputs, coordinates adaptive a...
متن کاملThe central nervous system at the core of the regulation of energy homeostasis.
Energy homeostasis is kept through a complex interplay of nutritional, neuronal and hormonal inputs that are integrated at the level of the central nervous system (CNS). A disruption of this regulation gives rise to life-threatening conditions that include obesity and type-2 diabetes, pathologies that are strongly linked epidemiologically and experimentally. The hypothalamus is a key integrator...
متن کاملNutrient-sensing hypothalamic TXNIP links nutrient excess to energy imbalance in mice.
Nutrient excess in obesity and diabetes is emerging as a common putative cause for multiple deleterious effects across diverse cell types, responsible for a variety of metabolic dysfunctions. The hypothalamus is acknowledged as an important regulator of whole-body energy homeostasis, through both detection of nutrient availability and coordination of effectors that determine nutrient intake and...
متن کاملComparative Physiology of Energy Metabolism: Fishing for Endocrine Signals in the Early Vertebrate Pool
Energy is the common currency of life. To guarantee a homeostatic supply of energy, multiple neuro-endocrine systems have evolved in vertebrates; systems that regulate food intake, metabolism, and distribution of energy. Even subtle (lasting) dysregulation of the delicate balance of energy intake and expenditure may result in severe pathologies. Feeding-related pathologies have fueled research ...
متن کامل